Search results for "electronic transport"

showing 6 items of 6 documents

Time-dependent quantum transport in nanosystems : a nonequilibrium Green's function approach

2016

A time-dependent extension to the Landauer–Büttiker approach to study transient quantum transport in arbitrary junctions composed of leads and conducting devices is developed. The nonequilibrium Green’s function approach is employed for describing the charge and heat transport dynamics. The importance of the developed method is that it provides a closed formula for the time-dependent density matrix in both electronic and phononic systems. In the electronic case the nonequilibrium conditions are due to a switch-on of a bias voltage in the leads or a perturbation in the junction whereas in the phononic case the central region of interest is coupled to reservoirs of di erent temperatures. In b…

suprajohtavuusnanoelektroniikkasuperconductivitygrapheneGreen's functionsähkönjohtavuusnanorakenteetelectronic transportnanoscale electronicslämmön johtuminengrafeenikvanttifysiikkaheat transportquantum transportfononit
researchProduct

Complexes of carbon nanotubes with ions and macromolecules : studies on electronic conduction properties

2014

electronic transportprotein engineeringhemicellulosecarbon nanotubealkali-dopingbiosensornanomaterials
researchProduct

Time-dependent Landauer—Büttiker formalism for superconducting junctions at arbitrary temperatures

2016

We discuss an extension of our earlier work on the time-dependent Landauer– Büttiker formalism for noninteracting electronic transport. The formalism can without complication be extended to superconducting central regions since the Green’s functions in the Nambu representation satisfy the same equations of motion which, in turn, leads to the same closed expression for the equal-time lesser Green’s function, i.e., for the time-dependent reduced one-particle density matrix. We further write the finite-temperature frequency integrals in terms of known special functions thereby considerably speeding up the computation. Simulations in simple normal metal – superconductor – normal metal junctions…

particle densitiesspecial functionsarbitrary temperatureelectronic transportfinite temperaturesnoninteractingsuperconducting junctions
researchProduct

Disorder and dephasing effects on electron transport through conjugated molecular wires in molecular junctions

2012

Understanding electron transport processes in molecular wires connected between contacts is a central focus in the field of molecular electronics. Especially, the dephasing effect causing tunneling-to-hopping transition has great importance from both applicational and fundamental points of view. We analyzed coherent and incoherent electron transmission through conjugated molecular wires by means of density-functional tight-binding theory within the D'Amato-Pastawski model. Our approach can study explicitly the structure/transport relationship in molecular junctions in a dephasing environmental condition using only single dephasing parameter. We investigated the length dependence and the inf…

Condensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale Physicsta114Field (physics)Condensed matter physicsDephasingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesThermal fluctuationsConductanceMolecular electronicsdephasingConjugated systemCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectron transport chainElectronic Optical and Magnetic MaterialsMolecular wireelectronic transportMesoscale and Nanoscale Physics (cond-mat.mes-hall)grafeeni
researchProduct

Quantum wire with periodic serial structure

1991

Electron wave motion in a quantum wire with periodic structure is treated by direct solution of the Schr\"odinger equation as a mode-matching problem. Our method is particularly useful for a wire consisting of several distinct units, where the total transfer matrix for wave propagation is just the product of those for its basic units. It is generally applicable to any linearly connected serial device, and it can be implemented on a small computer. The one-dimensional mesoscopic crystal recently considered by Ulloa, Casta\~no, and Kirczenow [Phys. Rev. B 41, 12 350 (1990)] is discussed with our method, and is shown to be a strictly one-dimensional problem. Electron motion in the multiple-stu…

Wave propagationThin filmsDispersió (Física nuclear)Schrödinger equationElectronTransport d'electronsSchrödinger equationsymbols.namesakeOpticsQuantum mechanicsPel·lícules finesPhysicsMesoscopic physicsFenòmens mesoscòpics (Física)business.industryQuantum wireElectron transportNanostructured materialsTransfer matrixElectronic transportProduct (mathematics)Scattering (Physics)Equació de SchrödingersymbolsMesoscopic phenomena (Physics)Fundamental Resolution EquationMaterials nanoestructuratsbusinessTeoria del transport
researchProduct

Simulation studies of electronic transport in a-Si:H thin film solar cells

2009

The thin film solar cells in Hydrogenated Amorphous Silicon (a-Si:H) are attractive for cheaper production and used in ultra low cost, high volume applications but have a relatively lower electronic performance. These limitations are mainly due to properties of the a-Si:H and relies on the production technique. In this study we investigate the physical mechanisms which are on the basis of the electronic transport and their relation with the technological processes. The transport-simulation computer program ATLAS (Silvaco) has been used to examine the role of the mid gap defect density in determining the performance of a-Si:H p-i-n homojunction solar cell.

thin film solar cells Hydrogenated Amorphous Silicon a-Si:H simulation pin diode electronic transport
researchProduct